a2 United States Patent

Anderson et al.

US009189456B2

(10) Patent No.: US 9,189,456 B2
(45) Date of Patent: Nov. 17,2015

(54) TECHNIQUE FOR OPTIMIZATION AND
RE-USE OF HARDWARE IN THE
IMPLEMENTATION OF INSTRUCTIONS
USED IN VITERBI AND TURBO DECODING,
USING CARRY SAVE ARITHMETIC

(71) Applicants: Timothy D Anderson, Dallas, TX (US);
Shriram D Moharil, Allen, TX (US)

(72) Inventors: Timothy D Anderson, Dallas, TX (US);
Shriram D Moharil, Allen, TX (US)

(73) Assignee: TEXAS INSTRUMENTS
INCORPORATED, Dallas, TX (US)

*) Notice: Subject to any disclaimer, the term of this
] y
patent is extended or adjusted under 35
U.S.C. 154(b) by 229 days.

(21) Appl. No.: 13/916,810
(22) Filed: Jun. 13,2013
(65) Prior Publication Data
US 2013/0275485 Al Oct. 17, 2013
Related U.S. Application Data

(62) Division of application No. 12/874,653, filed on Sep.
2, 2010, now Pat. No. 8,554,823.

(51) Int.CL
GOGF 7/50 (2006.01)
GOGF 17/12 (2006.01)
HO3M 13/39 (2006.01)
HO3M 13/41 (2006.01)
HO3M 13/00 (2006.01)
(52) US.CL
CPC oo GOGF 17/12 (2013.01); HO3M 13/395

(2013.01); HO3M 13/3922 (2013.01); HO3M
1374107 (2013.01); HO3M 13/6502 (2013.01);
HO3M 13/6511 (2013.01); HO3M 13/6586
(2013.01)

a b

(58) Field of Classification Search
CPC ... GOG6F 7/509; GOG6F 7/5095; GOGF 7/607,
GOG6F 5/01; GO6F 7/4991
USPC ottt 708/709
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

4,839,850 A * 6/1989 Nolletal. ..o 708/709
5,426,598 A * 6/1995 Hagihara 708/709

* cited by examiner

Primary Examiner — Tan V. Mai
(74) Attorney, Agent, or Firm — Robert D. Marshall, Ir.;
Frank D. Cimino

(57) ABSTRACT

The present invention provides a means for optimization and
re-use of hardware in the implementation of Viterbi and Turbo
Decoders using carry save arithmetic. Successful provision
for each target application requires that two main issues be
confronted. These are: merging the computation of summa-
tion terms (a2-b2+c2) with (X2+y2+z2); and (a3+b3-c3)
with (x3+y3+73); implementing an efficient method of com-
puting (ad-b4—c4); and merging this computation with (x4+
y4+74). The invention solves both of these issues and suc-
cessfully merges the Viterbi instructions with a complete
reuse of the hardware that is required for the implementation
of Turbo instructions. The hardware required by both classes
of instructions is optimized by efficiently employing carry
save arithmetic.

3 Claims, 4 Drawing Sheets

c

512 ; 517 ! 518
500 selb 507 X selc

CSA CSA CSA CSA

4 ((¢
501 502 503 504

o ™-513
ey 4
voo| CSA | | csa
32 32 \506
/
505 . ™~514
o cint

; V
cin2 508

520 516

US 9,189,456 B2

U.S. Patent Nov. 17, 2015 Sheet 1 of 4
106 108
100 10\2 ——€|—}> SLI(\;\ER —i>x Xp A
PO S INTERLEAVER 107
o o0 J owe (Yol /7
P2 Pt ™| DECODER > <
-
109 105
A1 /
\ 4
101! A, 1/10
FIG. 1
L] DE-INTERLEAVER (PRIOR ART)
omae | Wy)
™| DECODER gL
p10 p1n1—> 1\04
4
103
210
BETA
X, —)+ STATE 5 | BETARAM
T 211 METRIC nr .| BLOCK
b \ BLOCK 20
nr 212 & evT
Anr
a priori Y
INPUTS EXTRINSIC
ALPHA OUTPUTS
X STATE a EXTRINSIC
nf ¢ METRIC nf | “BLock W
5 213 BLOCK n
K 215
FIG. 2

(PRIOR ART)

U.S. Patent Nov. 17, 2015 Sheet 2 of 4
301
302~ CARRY SAVE
FULL ADDER
S C,
\=/=/
303
FIG. 3
(PRIOR ART)
a0 42 € 413
411~ {
¥ 405 ¥
; selb ;
403 N 408 404
414 y v
cin1 5—5_\/_/<401 407
40915
Y Y
in2 \/ FIG. 4
402 (PRIOR ART)
415

410

US 9,189,456 B2

406

selc

U.S. Patent Nov. 17, 2015 Sheet 3 of 4 US 9,189,456 B2
a b c
512 l 517 | 518
500 selb 507 selc
o ™-513
YVYY Y VY YVYY YVYVY YVYVvY YVYY
CSA CSA CSA CSA o 0o CSA | | CsA
3:2 3:2 3:2 3:2 3:2 3:2 ~-506
% / / % /
501 502 503 504 505 1 ™~-514
o cin
N -
Y \/ \d 515
in2 FI1G. 5
cin 508
520 516
y
610 620 630
\ / /
— — — —» Result1 >
a —»
THREE |- — — —» Result2 >
b—= INPUT MAX — RESULT
ALU [——— Resul3 >
c—»
— — — —» Result4 >

FIG. 6

U.S. Patent Nov. 17, 2015 Sheet 4 of 4 US 9,189,456 B2

Z/30
731
610 620 o
A N > 740
— — —»{ Carry1 /
a—» 0
THREE |- — —»{ Cary2 » offset1
b—» INPUT s VALUE
— — —»{ Carry
THRESHOLD —»| AU 735 73
— — —»| Carry4 FINAL
> ALU
0 >z
» offset2
FIG. 7 VALUE orse
736
MIN —|MIN
737
\' 810
731 /
=‘4 SUM RANGE
~__J
DIFFERENCE TABLE 3 LOGIC
> \ RANGE |
‘_\J g CARRY
CENTER CENTER
735
FIG. 8

830

US 9,189,456 B2

1
TECHNIQUE FOR OPTIMIZATION AND
RE-USE OF HARDWARE IN THE
IMPLEMENTATION OF INSTRUCTIONS
USED IN VITERBI AND TURBO DECODING,
USING CARRY SAVE ARITHMETIC

This application is a divisional application of U.S. patent
application Ser. No. 12/874,653 filed Sep. 2, 2010 entitled
TECHNIQUE FOR OPTIMIZATION AND RE-USE OF
HARDWARE IN THE IMPLEMENTATION OF INSTRUC-
TIONS USED IN VITERBI AND TURBO DECODING,
USING CARRY SAVE ARITHMETIC.

TECHNICAL FIELD OF THE INVENTION

The technical field of this invention is forward error cor-
rection.

BACKGROUND OF THE INVENTION

Receivers capturing data can do so more efficiently if the
data has been encoded allowing forward error correction. The
Viterbi decoder uses the Viterbi algorithm for decoding a
bitstream that has been encoded using Forward Error Correc-
tion based on a Convolutional code. The Viterbi algorithm is
highly resource-consuming, but it does provide maximum
likelihood decoding.

Viterbi decoders employ Trellis decoding to estimate the
most likely sequence of events that lead to a particular state.
U.S. patent application Ser. No. 12/496,538 filed Feb. 1, 2009
entitled “METHOD AND APPARATUS FOR CODING
RELATING TO FORWARD LOOP” describes faster decod-
ing in Viterbi decoders by employing 2 bits of the Trellis
decoding to be performed using DSP instructions called
R4ACS Radix-4 Add Compare Select (RACS4) and Radix-4
Add Compare Decision (RACD). This invention deals with
the implementation of this class of DSP instructions.

Turbo codes are a type of forward error correction code
with powerful capabilities. These codes are becoming widely
used in many applications such as wireless handsets, wireless
base stations, hard disk drives, wireless LANS, satellites, and
digital television. A brief overview of Turbo decoders is sum-
marized below.

A functional block diagram of a turbo decoder is shown in
FIG. 1. This iterative decoder generates soft decisions from a
maximum-a-posteriori (MAP) block using the probabilities
represented by a-posteriori feedback terms A, 110 and A,
109. Each iteration requires the execution of two MAP
decodes to generate two sets of extrinsic information. The
first MAP decoder 102 uses the non-interleaved data as its
input and the second MAP decoder 103 uses the interleaved
data from the interleaver block 101.

The MAP decoders 102 and 103 compute the extrinsic
information as:

Prix, = 1| RY)

W, =logm—————— W
" B, = 01 RD

where: R,"=(R,,R;, . . . R,_;) denotes the received sym-
bols. The MAP decoders also compute the a posteriori prob-
abilities:

10

15

20

25

30

35

40

45

50

55

60

65

1 2
Pr(x, =i|R}) = WZPr(xn =i, S, =m', Sp_) =m) @
1

Here S, refers to the state at time n in the trellis of the
constituent convolutional code.
The terms in the summation can be expressed in the form

Pr(x,=1,S,=m'".S, | =m)=a,_(m)y, (m,m)B,m')

®
where the quantity

V' (1,) =Pr(S, =m' %, =1, R, |S,_1=m) Q)

is called the branch metric, and

a,(m)=Pr(S,=m’R") ®

is called the forward (or alpha) state metric, and

BOn)=Pr(R,,,1"1S,=m") Q)

is called the backward (or beta) state metric.

The branch metric depends upon the systematic, parity, and
extrinsic symbols. The extrinsic symbols for a given MAP
decoder are provided by the other MAP decoder at inputs 109
and 110. The alpha and beta state metrics are computed recur-
sively by forward and backward recursions given by
M

01y =0t, ()Y, (m,m')

and

Pu-1lm) = Z B,(m)y, (m", m) ®

The slicer 107 completes the re-assembling of the output bit
stream X, . . . X,,_; 108.

The block diagram of the MAP decoder is shown in FIG. 2.
The subscripts r and f present the direction, reverse and for-
ward, respectively, of the sequence of the data inputs for the
recursive blocks beta and alpha. Input bit streams 210-212
and 213-215 are labeled as parameters X, . P, A, andX

el N

P, s A, srespectively. Feedback streams are labeled o, rand

Both the alpha state metric block 202 and beta state metric
block 203 calculate state metrics. Both start at a known loca-
tion in the trellis, the zero state. The encoder starts the block
of'ninformation bits (frame size n1=5114) at the zero state and
after n cycles through the trellis ends at some unknown state.

The mapping of this task of computing the branch metrics
and adding to the previous state metrics, to a class of DSP
instructions (T4AMAX/T2MAX) is outside the scope of this
invention. The current invention deals with the efficient
implementation of this class of DSP instructions.

One of the main sources of latency in computer arithmetic
is the propagation of carries in the computation of a sum of
two or more numbers. This is a well-studied area, which is not
explored here except to note that the best algorithms for
addition require a number of logic levels equal to:

levels=2+log, *(width) ()]

where: width is the number of bits representing the numbers
to be added.

FIG. 3 illustrates the three-to-two carry save circuit 302,
otherwise known as the 3:2 CSA circuit, which takes three
inputs 301 (a, b and ¢) and produces two outputs 303 (S and
C,). This circuit has the property that when S and C, are added
together, they produce the same result as adding a+b+c. This

US 9,189,456 B2

3

process is often referred to as compressing the three numbers
down to two numbers. The 3:2 CSA is sometimes referred to
as a 3:2 compressor.

The three inputs can be any three bits, while the two outputs
are the sum S and carry C,, resulting from the addition of these
three bits. These are computed based on the following logical
equations:

S=aDbDe (10)

Co=(a*b)+(b*c)+(c*a) an

The main advantage of using the 3:2 circuit is that equa-
tions (10) and (11) can typically be computed with a logic
depth of no greater than 2. Thus it allows for faster computa-
tion of the sum of three numbers by preventing the carry from
propagating. Therefore, given three numbers which need to
be added together, rather than sequentially computing a+b=x,
and then x+c, with a resulting delay

delay=2*(2+log,*(width)) (12A)

one can process a+b+c through a 3:2 CSA compressor fol-
lowed by an adder to achieve a total delay of:

delay=4+log,*(width) (12B)

The savings in the number of logic level delays becomes even
more pronounced when the width of the operands involved is
large.

SUMMARY OF THE INVENTION

The present invention makes possible the optimization and
re-use of hardware in the implementation of R4 ACS Radix-4
Add Compare Select (RACS4) and Radix-4 Add Compare
Decision (RACD) both classes of instructions for Viterbi
decoders and TAMAX/T2MAX Turbo decoders using carry
save arithmetic. Successful provision for these instructions
requires merging the computation of summation terms and
implementing an efficient method of computing.

The invention solves these issues and merges the R4ACS/
R4ACD instructions with a complete reuse of the hardware
that is required for the implementation of T2MAX/T4MAX
instructions. The hardware required by both classes of
instructions is optimized by efficiently employing carry save
arithmetic.

The merged hardware includes a configurable three input
arithmetic logic unit that can perform four arithmetic opera-
tions used by the max instructions. This invention uses 2’s
complement arithmetic and selective inversion to perform the
four arithmetic operations a+b+c, a+b—c. a-b+c and a-b-c.
These computations are used on inner terms of a max4 opera-
tion to facilitate circuit reuse in performing the operations in
WiMAX radix-4 turbo decoders. A preferred embodiment
employs carry-save adders in the three input arithmetic logic
unit.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other aspects of this invention are illustrated in
the drawings, in which:

FIG. 1 illustrates the high-level block diagram of a Turbo
decoder (Prior Art);

FIG. 2 illustrates the high-level block diagram of a MAP
decoder (Prior Art);

FIG. 3 illustrates the basic Carry Save Adder employed
(Prior Art);

FIG. 4 illustrates the general approach of computing terms
in Viterbi/Turbo instructions (Prior Art);

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 5 illustrates the optimization and reuse of hardware
across Viterbi/Turbo instructions using carry-save addition
according to this invention;

FIG. 6 illustrates using the three input arithmetic logic unit
illustrated in FIG. 5 in forming the MAX4 function;

FIG. 7 illustrates using the three input arithmetic logic unit
illustrated in FIG. 5 in forming the MINST function; and

FIG. 8 illustrates an alternate embodiment to that illus-
trated in FIG. 7 for forming the output z.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

R4ACS/R4ACD instructions used for implementing Vit-
erbi decoding involve the following arithmetic computation:
R=max4*(al+bl+cl,a2+b2-c2,a3-b3+c3,a4-b4-c4) (13)

T2MAX/T4MAX Instructions used for Turbo decoders
involve instructions requiring the following arithmetic com-
putation:

R=max4*(x1+y1+z1 x2+y2+22 x34+y3+23 x4+y4+z4) (14)

where: each of the terms compared can be N bits wide in
general.

The following are the main issues in merging the two
classes of instructions; merging the computation of summa-
tion terms (a2+b2-c2), (x2+y2+z72), (a3-b3+c3) and (x3+
y3+73); implementing an efficient method of computing for
(ad4-b4—c4); and merging this computation with (x4+y4+z4).

The present invention solves both of these issues and suc-
cessfully merges the two classes of instructions. Furthermore,
our invention optimizes the hardware required by both classes
ofinstructions by efficiently employing carry save arithmetic.

FIG. 4illustrates the general approach for computing terms
in the different instruction classes according to the prior art.
The general approach toward computing each of the N bit
wide terms for the instructions is to use two N-bit wide 2’s
complement adders 401 and 402 by using the associative
property of addition.

The first term a 411 is 2°s complement value and is a direct
input to 2’°s complement adder 401 used to generate an inter-
mediate result S 409. The second term b 412 passes through
multiplexer 403, which generates b or the complement of b
and passes the result to input 408 of adder 401. The third term
¢ 413 is passes through multiplexer 404 to generate ¢ or the
complement of ¢ and passes the result to input 407 of adder
401. Adder 402 with inputs 407 and 409 generates the final
resulty 410. The signals selb 405 and selc 406 control the 2:1
multiplexers 403 and 404 respectively. The signals cinl 414
and cin2 415 are the carry-in values to the least significant bit
positions of the respective adder circuits. By appropriately
setting the values of these signals as shown in Table 1, one can
generate any of the four terms required by the Viterbi instruc-
tions.

TABLE 1
selb selc cinl cin2 y
0 0 0 0 a+b+c
0 1 0 1 a+b-c
1 0 1 0 a-b+c
1 1 1 1 a-b-c¢c

These settings are based on the following simple Boolean
equation for computing the 2’s complement:
—x=(~x)+1

(15)

where: ~x is the bit-wise complement of an N bit wide signal
x; and —x is its additive inverse.

US 9,189,456 B2

5

However, the approach of FIG. 4, while conceptually
simple results in unacceptable worst-case delay. The present
invention illustrated in FIG. 5 yields optimized delay results.
The signals b and ¢ are sent through multiplexer 500 con-
trolled by selb signal 517 and multiplexer 507 controlled by
selc signal 518 respectively to CSA 3:2 circuits 501 through
506. Note CSA 3:2 circuits 501 through 506 represent the
appropriate number of carry save adder circuits for the imple-
mented data width. Signal a passes directly to the CSA 3:2
circuits 501 through 506. These CSA 3:2 circuits generate
sum 515 and carry 514 terms for each bit of the data width.
These are input to the 2°s complement adder 508 to generate
the final result y consisting of sum output 516 and carry
output 520. The signal cin2 is the carry input to the least
significant bit (LSB) of the final 2’s complement adder 508.
Table 2 shows the values of the input selb, selc, cinl and cin2
use generate the four terms required by the Viterbi instruc-
tions.

TABLE 2
selb selc cinl cin2 y
0 0 0 0 a+b+c
0 1 0 1 a+b-c¢
1 0 0 1 a-b+c
1 1 1 1 a-b-c¢

The basic idea behind the generation of the first three terms
in this approach is similar to the implementation in FIG. 4.
Thekey difference is in the generation of the fourth term. This
is achieved by rewriting the logic equation for this term as
follows:

a-b-c=a+((~by+1)+((~c)+1) (16)

The signal cin2 can be set to provide the binary 1 that is
required for generating the 2’s complement of one of the
inputs. The N-bit wide carry vector k generated by the 3:2
CSA circuits needs to be shifted to the left by one, prior to
combining with the sum vector m, based on arithmetic
weight. This leaves the carry bit from the 3:2 CSA circuit in
the lowest bit position as an unused input. The signal cinl is
used to drive this input to add in the extra binary 1 that is
required to generate the 2’s complement for the other input.
Thus all four terms required by the Viterbi instructions can be
obtained using the hardware described in FIG. 5.

The total area consumed by the N 3:2 Carry Save circuits is
typically much less than the N-bit wide adder that they
replace, if one had chosen a carry-look-ahead or parallel-
prefix adder which is optimized for performance. On the other
hand, if one chooses an adder architecture based on chip area
considerations (e.g. a ripple-carry adder), the delay through a
3:2 Carry Save circuit is much smaller in comparison. More
important, this delay is constant and is independent of the
width N of the operands involved, leading to even greater
efficiency of this approach with regards to area and perfor-
mance, as the width N of the operands increases.

FIG. 6 illustrates using the three input arithmetic logic unit
illustrated in either FI1G. 4 or 5 in forming the MAX4 function
discussed above. Three inputs a, b and ¢ are supplied to three
input ALU 610. As noted above the MAX4 function requires
computation of al+bl+cl, a2+b2—-c2, a3-b3+c3 and a4-b4-
c4. The four sets of operands (al,bl,cl), (a2,b2,c2), (a3,b3,
c3) and (a4,b4,c4) are sequentially supplied to the respective
a, b and ¢ inputs of three input ALU 610. These four opera-
tions are controlled as noted above to achieve the desired
arithmetic combinations producing four results Resultl,
Result2, Result3 and Result4 stored in respective registers of

20

25

30

40

45

55

6

register set 620. In a final operation the four results Resultl,
Result2, Result3 and Result4 are supplied to maximum block
630. Maximum block 630 selects the maximum of the four
results Resultl, Result2, Result3 and Result4 for output. This
is the result R of equation (14).

The implementation of the MAX* computation function
(such as noted above) in WiMAX CTC/3GPP radix-4 decod-
ers is hardware intensive. Likewise, the hardware require-
ments in the implementation of certain low density parity
check (LDPC) functions can be quite large. When designing
circuits that implement both functions, it advantageous to
minimize and efficiently reuse hardware in order to limit
overall area and power requirements. This invention allows
efficient reuse of the hardware required to implement both the
MAX* and LDPC functions. Typically, the MAX* computa-
tion in the WiMAX decoders requires the following arith-
metic computation:
1. result_max4=max4 (a,+b,+cy,a,+b,—c,,a,—b,+C5,a5-bs—
C3):
2. correction=maxabsdiff4(a,+b,+cy,a,+b,—c,,a,~b,+C,a5—
bs—¢;):
3. if ((correction>>threshold)>0)

then correction=0,

else correction=value;
4. result=result_max4+correction;

The MINST implementation for LDPC functions requires
the following computation:
1. Ifx<y

then min=x,

else min=y;

2. If (min<0)
then min=0;
3. 1fx<0
then a=0,
else a=x;
4. 1f y<0
then b=0,
else b=y;
5. sum=a+b;
6. dif=a-b;
7. if ((sum<threshold) AND (sum>-threshold))
then offset1=value,

else offset1=0;

8. if ((dif<threshold) AND (dif>~threshold))
then offset2=value,

else offset2=0;

9. z=min+offsetl —offset2;

These two functions appear to be different since the nature
of comparison of the threshold operands in the MINST is
different from the computation of the terms in the max4
function of the MAX* function. This ordinarily implies that
the hardware required to implement them cannot be shared.
This invention further describes a manner for sharing hard-
ware to implement these two functions.

The invention involves the following simple transforma-
tion to the MINST computation. The MINST function can be
rewritten as:

1. Ifx<y

then min=x,

else min=y;
2. if (min<0)

then min=0;
3. 1fx<0

then a=0,

else a=x'
4. 1f y<0

then b=0,

else b=y;

US 9,189,456 B2

5. sum=a+b;
6. dif=a-b;
7 if ((a+b-threshold<0) AND (a+b+threshold>0))

then offset1=value,

else offset1=0;
8. if ((a-b-threshold<0) AND (a-b+threshold>0))

then offset2=value,

else offset2=0;
9. z=min+offsetl —offset2;
This transforms the inner decisions in the range determina-
tions of steps 7 and 8 into three input arithmetic operations
with a compare to zero. Thus each term for the threshold
comparison now resembles one of the three input arithmetic
operations used in the max4 function almost exactly. The
compare to zero portion of each inner decision is indicated by
the three input ALU carry output 520. Much of the hardware
required to implement these two functions can now be shared.
This is an important area and power saving since each of the
terms involved in this computation can be N bits wide in
general.

FIG. 7 illustrates using the three input arithmetic logic unit
illustrated in either FIG. 4 or 5 in forming the MINST func-
tion discussed above. Three inputs a, b and ¢ are supplied to
three input ALU 610. As noted above the MINST function
requires computation of a+b—threshold, a+b+threshold, a-b-
threshold and a-b+threshold. The operands a, b and threshold
are sequentially supplied to respective inputs of three input
ALU 610. These four operations are controlled as noted
above to achieve the desired arithmetic combinations. The
compare to zero desired results come from the corresponding
carry output 520. Register set 620 stores the corresponding
outputs Carryl, Carry2, Carry3 and carry4 stored in respec-
tive registers.

Circuit 730 completes the range comparisons of steps 7 and
8. AND gate 731 forms the AND function of step 7 from the
Carryl and Carry2 values. Multiplexer 732 completes the
“If...then...else” operation of step 7 by selecting value for
offsetl if the range condition is satisfied and selecting O
otherwise. AND gate 735 forms the AND function of step 8
from the Carry3 and Carry4 values. Multiplexer 736 com-
pletesthe “If . . . then . . . else” operation of step 8 by selecting
value for offset2 if the range condition is satisfied and select-
ing 0 otherwise.

The calculation of min in steps 1 and 2 is not on the critical
path and thus can be done separately. Final ALU 740 per-
forms the operation z=min+offsetl—offset2 of step 9. This
could be preformed by a further pass through three input ALU
610 or two passes through a normal two input ALU.

The final arithmetic operation (z=min+offsetl-offset2)
may be further simplified. Each of offsetl and offset2 can
individually be “0” or “value” depending upon the respective
range determinations. Their difference (offsetl-offset2) is
thus either be “0”, “value” or “-—value”. Table 3 list these
conditions.

TABLE 3
Ranges offsetl offset2 z
sum in range; value value min
difference in range
sum in range; value 0 min + value
difference out of range
sum out of range; 0 value min - value
difference in range
sum out of range; 0 0 min

difference out of range

10

15

20

25

30

40

50

55

60

65

8

FIG. 8 illustrates an alternate embodiment of this invention
for forming the output z. Circuit 737 is an alternate to circuit
730. Circuit 737 includes AND gate 731 and AND gate 735
receiving respective Carry signals from register set 620 as
previously illustrated in FIG. 7. AND gate 731 generates a
sum range output indicating whether the sum a+b is within the
range of step 7. AND gate 735 generates a difference range
output indicating whether the difference a-b is within the
range of step 8. Table 3 logic 810 controls multiplexers 821
and 822. One input of multiplexer 821 is “0.” A second input
of multiplexer 821 is value. Depending on the signal received
at the control input multiplexer 821 supplies either “0” or
value to its output. The selected output of multiplexer 821
supplies an inverting input and a non-inverting input of mul-
tiplexer 822. Table 4 lists the results of the selections of
multiplexers 821 and 822 as controlled by Table 3 logic 810.

TABLE 4
Multiplexer Multiplexer

Ranges 821 output 822 output Carry
sum in range; 0 0 0
difference in range
sum in range; value value 0
difference out of range
sum out of range; value ~value 1

difference in range
sum out of range; 0 0 0
difference out of range

Multiplexer 822 takes advantage of 2’s complement arith-
metic and equation (15) to execute the subtraction by inver-
sion and injection of a carry into ALU 830. ALU 830 per-
forms the addition of min to form the result z.

The major advantage of this embodiment of the invention is
that rearranging the inner calculations of the range decisions
of steps 7 and 8 permits reuse of three input ALU 610 for
performing the MINST function.

Compared to other solutions to the same problem, this
solution offers better performance than other solutions requir-
ing comparable chip area. In addition, reduced chip area can
be achieved when compared with other solutions offering
comparable performance. The solution offers efficient perfor-
mance while keeping area requirements low. These benefits
are further enhanced as the size of the operands involved
increases, leading to greater scalability of this approach.

What is claimed is:

1. A configurable three input arithmetic logic unit forming
a selectable combination of first, second and third multibit
input data, comprising:

a first multiplexer having a first input receiving said second
multibit input data, a second inverting input receiving
said second multibit input data, a control input and an
output connected to said second input of said first multi-
bit adder, said first multiplexer supplying said first input
or said second input to said output dependent upon said
control input;

a second multiplexer having a first input receiving said
third multibit input data, a second inverting input receiv-
ing said third input data, a control input and an output,
said second multiplexer supplying said first input or said
second input to said output dependent upon said control
input; and

a plurality of carry save adders disposed in a sequence
between a least significant and a most significant, each
carry save adder having a first input receiving corre-
sponding bits of said first multibit input data, a second
input connected to corresponding bits of said output of

US 9,189,456 B2

9

said first multiplexer, a third input connected to corre-
sponding bits of said output of said second multiplexer,
a least significant bit carry input, a sum output and a
carry output, said least significant bit carry input of each
of'said plurality of carry save adders connected to a carry
output of a most significant bit of a next least significant
carry save adder, said carry input of a least significant
carry save adder receiving a first carry input; and

a multibit adder having a first input connected to said sum
output of said plurality of carry save adders, a second
input connected to said carry output of said plurality of
carry save adders, a least significant bit carry input
receiving a second carry input and an output forming an
output of said configurable three input arithmetic logic
unit.

2. The configurable three input arithmetic logic unit of

claim 1, wherein:

said first multiplexer and said second multiplexer output
said first input when said corresponding control input is
0;

said first multiplexer and said second multiplexer output
said second input when said corresponding control input
is 1;

said configurable three input arithmetic logic unit outputs
said first multibit input data plus said second multibit
input data plus said third multibit input data when said
control input of said first multiplexer is 0, said control

15

20

25

10

input of said second multiplexer is 0, said first carry
input is 0 and said second carry input is 0;

said configurable three input arithmetic logic unit outputs

said first multibit input data plus said second multibit
input data minus said third multibit input data when said
control input of said first multiplexer is 0, said control
input of said second multiplexer is 1, said first carry
input is 0 and said second carry input is 1;

said configurable three input arithmetic logic unit outputs

said first multibit input data minus said second multibit
input data plus said third multibit input data when said
control input of said first multiplexer is 1, said control
input of said second multiplexer is 0, said first carry
input is 0 and said second carry input is 1; and

said configurable three input arithmetic logic unit outputs

said first multibit input data minus said second multibit
input data minus said third multibit input data when said
control input of said first multiplexer is 1, said control
input of said second multiplexer is 1, said first carry
input is 1 and said second carry input is 1.

3. The configurable three input arithmetic logic unit of
claim 1, wherein:
said first multibit input data, said second multibit input data

and said third multibit input data are expressed as 2’s
complement values; and

said multibit adder is a 2’s complement adder.

#* #* #* #* #*

